Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLOS Digit Health ; 1(1): e0000007, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2256853

ABSTRACT

Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.

2.
Wellcome Open Res ; 6: 277, 2021.
Article in English | MEDLINE | ID: covidwho-2067250

ABSTRACT

TeenCovidLife is part of Generation Scotland's CovidLife projects, a set of longitudinal observational studies designed to assess the psychosocial and health impacts of the COVID-19 pandemic. TeenCovidLife focused on how adolescents in Scotland were coping during the pandemic. As of September 2021, Generation Scotland had conducted three TeenCovidLife surveys. Participants from previous surveys were invited to participate in the next, meaning the age ranges shifted over time. TeenCovidLife Survey 1 consists of data from 5,543 young people age 12 to 17, collected from 22 May to 5 July 2020, during the first school closures period in Scotland. TeenCovidLife Survey 2 consists of data from 2,245 young people aged 12 to 18, collected from 18 August to 14 October 2020, when the initial lockdown measures were beginning to ease, and schools reopened in Scotland. TeenCovidLife Survey 3 consists of data from 597 young people age 12 to 19, collected from 12 May to 27 June 2021, a year after the first survey, after the schools returned following the second lockdown in 2021. A total of 316 participants took part in all three surveys. TeenCovidLife collected data on general health and well-being, as well as topics specific to COVID-19, such as adherence to COVID-19 health guidance, feelings about school closures, and the impact of exam cancellations. Limited work has examined the impact of the COVID-19 pandemic on young people. TeenCovidLife provides relevant and timely data to assess the impact of the pandemic on young people in Scotland. The dataset is available under authorised access from Generation Scotland; see the Generation Scotland website for more information.

3.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-1998859

ABSTRACT

TeenCovidLife is part of Generation Scotland’s CovidLife projects, a set of longitudinal observational studies designed to assess the psychosocial and health impacts of the COVID-19 pandemic. TeenCovidLife focused on how adolescents in Scotland were coping during the pandemic. As of September 2021, Generation Scotland had conducted three TeenCovidLife surveys. Participants from previous surveys were invited to participate in the next, meaning the age ranges shifted over time. TeenCovidLife Survey 1 consists of data from 5,543 young people age 12 to 17, collected from 22 May to 5 July 2020, during the first school closures period in Scotland. TeenCovidLife Survey 2 consists of data from 2,245 young people aged 12 to 18, collected from 18 August to 14 October 2020, when the initial lockdown measures were beginning to ease, and schools reopened in Scotland. TeenCovidLife Survey 3 consists of data from 597 young people age 12 to 19, collected from 12 May to 27 June 2021, a year after the first survey, after the schools returned following the second lockdown in 2021. A total of 316 participants took part in all three surveys. TeenCovidLife collected data on general health and well-being, as well as topics specific to COVID-19, such as adherence to COVID-19 health guidance, feelings about school closures, and the impact of exam cancellations. Limited work has examined the impact of the COVID-19 pandemic on young people. TeenCovidLife provides relevant and timely data to assess the impact of the pandemic on young people in Scotland. The dataset is available under authorised access from Generation Scotland;see the Generation Scotland website for more information.

5.
Elife ; 112022 01 13.
Article in English | MEDLINE | ID: covidwho-1677761

ABSTRACT

Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNA methylation (DNAm) signatures of the circulating proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% and 58% of the variance in protein levels after adjusting for known protein quantitative trait loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample (Generation Scotland; n = 9537) and relating them to incident morbidities over a follow-up of 14 years, we uncovered 137 EpiScore-disease associations. These associations were largely independent of immune cell proportions, common lifestyle and health factors, and biological aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top biomarker associations from proteome-wide assessments of diabetes. These EpiScores for protein levels can therefore be a valuable resource for disease prediction and risk stratification.


Although our genetic code does not change throughout our lives, our genes can be turned on and off as a result of epigenetics. Epigenetics can track how the environment and even certain behaviors add or remove small chemical markers to the DNA that makes up the genome. The type and location of these markers may affect whether genes are active or silent, this is, whether the protein coded for by that gene is being produced or not. One common epigenetic marker is known as DNA methylation. DNA methylation has been linked to the levels of a range of proteins in our cells and the risk people have of developing chronic diseases. Blood samples can be used to determine the epigenetic markers a person has on their genome and to study the abundance of many proteins. Gadd, Hillary, McCartney, Zaghlool et al. studied the relationships between DNA methylation and the abundance of 953 different proteins in blood samples from individuals in the German KORA cohort and the Scottish Lothian Birth Cohort 1936. They then used machine learning to analyze the relationship between epigenetic markers found in people's blood and the abundance of proteins, obtaining epigenetic scores or 'EpiScores' for each protein. They found 109 proteins for which DNA methylation patterns explained between at least 1% and up to 58% of the variation in protein levels. Integrating the 'EpiScores' with 14 years of medical records for more than 9000 individuals from the Generation Scotland study revealed 137 connections between EpiScores for proteins and a future diagnosis of common adverse health outcomes. These included diabetes, stroke, depression, Alzheimer's dementia, various cancers, and inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease. Age-related chronic diseases are a growing issue worldwide and place pressure on healthcare systems. They also severely reduce quality of life for individuals over many years. This work shows how epigenetic scores based on protein levels in the blood could predict a person's risk of several of these diseases. In the case of type 2 diabetes, the EpiScore results replicated previous research linking protein levels in the blood to future diagnosis of diabetes. Protein EpiScores could therefore allow researchers to identify people with the highest risk of disease, making it possible to intervene early and prevent these people from developing chronic conditions as they age.


Subject(s)
Cardiovascular Diseases/diagnosis , DNA Methylation/genetics , Diabetes Mellitus/diagnosis , Epigenomics/methods , Neoplasms/diagnosis , Proteome/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Biomarkers , Epigenesis, Genetic , Female , Humans , Life Style , Male , Middle Aged , Risk Factors , Scotland , Young Adult
7.
PLoS One ; 16(8): e0255402, 2021.
Article in English | MEDLINE | ID: covidwho-1352705

ABSTRACT

Epidemiological and genetic studies on COVID-19 are currently hindered by inconsistent and limited testing policies to confirm SARS-CoV-2 infection. Recently, it was shown that it is possible to predict COVID-19 cases using cross-sectional self-reported disease-related symptoms. Here, we demonstrate that this COVID-19 prediction model has reasonable and consistent performance across multiple independent cohorts and that our attempt to improve upon this model did not result in improved predictions. Using the existing COVID-19 prediction model, we then conducted a GWAS on the predicted phenotype using a total of 1,865 predicted cases and 29,174 controls. While we did not find any common, large-effect variants that reached genome-wide significance, we do observe suggestive genetic associations at two SNPs (rs11844522, p = 1.9x10-7; rs5798227, p = 2.2x10-7). Explorative analyses furthermore suggest that genetic variants associated with other viral infectious diseases do not overlap with COVID-19 susceptibility and that severity of COVID-19 may have a different genetic architecture compared to COVID-19 susceptibility. This study represents a first effort that uses a symptom-based predicted phenotype as a proxy for COVID-19 in our pursuit of understanding the genetic susceptibility of the disease. We conclude that the inclusion of symptom-based predicted cases could be a useful strategy in a scenario of limited testing, either during the current COVID-19 pandemic or any future viral outbreak.


Subject(s)
COVID-19/pathology , Genetic Predisposition to Disease , Area Under Curve , COVID-19/genetics , COVID-19/virology , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , ROC Curve , SARS-CoV-2/isolation & purification
8.
Cell Syst ; 12(8): 780-794.e7, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1267622

ABSTRACT

COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.


Subject(s)
Biomarkers/analysis , COVID-19/pathology , Disease Progression , Proteome/physiology , Age Factors , Blood Cell Count , Blood Gas Analysis , Enzyme Activation , Humans , Inflammation/pathology , Machine Learning , Prognosis , Proteomics , SARS-CoV-2/immunology
9.
Br J Psychiatry ; 218(6): 334-343, 2021 06.
Article in English | MEDLINE | ID: covidwho-1067367

ABSTRACT

BACKGROUND: The COVID-19 pandemic and mitigation measures are likely to have a marked effect on mental health. It is important to use longitudinal data to improve inferences. AIMS: To quantify the prevalence of depression, anxiety and mental well-being before and during the COVID-19 pandemic. Also, to identify groups at risk of depression and/or anxiety during the pandemic. METHOD: Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC) index generation (n = 2850, mean age 28 years) and parent generation (n = 3720, mean age 59 years), and Generation Scotland (n = 4233, mean age 59 years). Depression was measured with the Short Mood and Feelings Questionnaire in ALSPAC and the Patient Health Questionnaire-9 in Generation Scotland. Anxiety and mental well-being were measured with the Generalised Anxiety Disorder Assessment-7 and the Short Warwick Edinburgh Mental Wellbeing Scale. RESULTS: Depression during the pandemic was similar to pre-pandemic levels in the ALSPAC index generation, but those experiencing anxiety had almost doubled, at 24% (95% CI 23-26%) compared with a pre-pandemic level of 13% (95% CI 12-14%). In both studies, anxiety and depression during the pandemic was greater in younger members, women, those with pre-existing mental/physical health conditions and individuals in socioeconomic adversity, even when controlling for pre-pandemic anxiety and depression. CONCLUSIONS: These results provide evidence for increased anxiety in young people that is coincident with the pandemic. Specific groups are at elevated risk of depression and anxiety during the COVID-19 pandemic. This is important for planning current mental health provisions and for long-term impact beyond this pandemic.


Subject(s)
COVID-19 , Pandemics , Adolescent , Adult , Child , Female , Humans , Longitudinal Studies , Mental Health , Middle Aged , SARS-CoV-2 , United Kingdom/epidemiology
10.
Cell Syst ; 11(1): 11-24.e4, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-459007

ABSTRACT

The COVID-19 pandemic is an unprecedented global challenge, and point-of-care diagnostic classifiers are urgently required. Here, we present a platform for ultra-high-throughput serum and plasma proteomics that builds on ISO13485 standardization to facilitate simple implementation in regulated clinical laboratories. Our low-cost workflow handles up to 180 samples per day, enables high precision quantification, and reduces batch effects for large-scale and longitudinal studies. We use our platform on samples collected from a cohort of early hospitalized cases of the SARS-CoV-2 pandemic and identify 27 potential biomarkers that are differentially expressed depending on the WHO severity grade of COVID-19. They include complement factors, the coagulation system, inflammation modulators, and pro-inflammatory factors upstream and downstream of interleukin 6. All protocols and software for implementing our approach are freely available. In total, this work supports the development of routine proteomic assays to aid clinical decision making and generate hypotheses about potential COVID-19 therapeutic targets.


Subject(s)
Blood Proteins/metabolism , Coronavirus Infections/blood , Pneumonia, Viral/blood , Proteomics/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , Biomarkers/blood , Blood Proteins/analysis , COVID-19 , Coronavirus Infections/classification , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Male , Middle Aged , Pandemics/classification , Pneumonia, Viral/classification , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL